Aggarwal, S. Kumar, N. Chelliah, P. R. (2021). Cryptographic consensus mechanisms. Advances in Computers, Volume 121, 211-226.
Al-Yahyaee, K. H. Mensi, W. Yoon, a. (2018). Efficiency, multifractality, and the long-memory property of the Bitcoin market: A comparative analysis with stock, currency, and gold markets, Finance Research Letters, Volume 27: 228-234.
Arbelaitz O, Gurrutxaga I, Muguerza J. (2013). An extensive comparative study of cluster validity indices. Pattern Recognition, 46:243–256.
Aruna Sri, P.S.G, Lalitha Bhaskari, D. (2020). Blockchain technology for secure medical data sharing using consensus mechanism, Materialstoday.
Becker, J., Breuker, D., Heide, T., Holler, J., Rauer, H., Böhme, R. (2013). Can we afford integrity by proof-of-work? Scenarios inspired by the Bitcoin currency.In: Böhme, R. (Ed.), The Economics of Information Security and Privacy. Springer Berlin Heidelberg, 135–156.
Berndt, D., Clifford, J. (1994). Using Dynamic Time Warping to Find Patterns in Time Series, Proc. AAAI-94 Workshop Knowledge Discovery in Databases, 359-370.
Bhaskar, N. D., Chuen D. L. K. (2015). Chapter 3 - Bitcoin Mining Technology, Handbook of Digital Currency Bitcoin, Innovation, Financial Instruments, and Big Data, 45-65.
Brandvold, M., Molnár, P., Vagstad, K., Valstad, C. (2015). Price Discovery on Bitcoin Exchanges. Journal of International Financial Markets, Institutions and Money, Volume 36,18-35.
Briere, M. Oosterlinck, K. Szafarz, A. (2013). Virtual Currency, Tangible Return: Portfolio Diversification with Bitcoin. Journal of Asset Management,16, 6, 365-373.
Bugday, A. Ozsoy, A. Öztaner, S. M. Sever, H. (2019). Creating consensus group using online learning-based reputation in blockchain networks, Pervasive and Mobile Computing Volume 59, 101056.
chaum D. fait A. & naor M. (1988). Untraceable Electronic Cash Conference on the Theory and Application of Cryptography CRYPTO: Advances in Cryptology- CRYPTO,88, 319-327.
Cheah E., Fry J. (2015). Speculative bubbles in Bitcoin markets? An empirical investigation into the fundamental value of Bitcoin, Economics Letters,130: 32–36.
Corradi, F., Höfner, P. (2018). The disenchantment of Bitcoin: unveiling the myth of a digital currency, International Review of Sociology,28:1.193-207.
Das, D. Dutta, A. (2020). Bitcoin’s energy consumption: Is it the Achilles heel to miner’s revenue? Economics Letters, Volume 186, 108530.
Dong, Q.X., & Cooper, O. (2016). A peer-to-peer dynamic adaptive consensus reaching model for the group AHP decision making. European Journal of Operational Research, 250(2). 521-530.
Dong, Y.C., Li, C.C., Xu, Y.F., & Gu, X. (2015). Consensus-based group decision making under multi-granular unbalanced 2-tuple linguistic preference relations. Group Decision and Negotiation, 24(2), 217-242.
Dwork, C. Naor, M. (1992). Pricing via Processing or Combatting Junk Mail, Annual International Cryptology Conference, CRYPTO 1992: Advances in Cryptology- CRYPTO,92, 139-147.
Dwyer, G. P. (2015). The economics of Bitcoin and similar private digital currencies, Journal of Financial Stability, Volume 17: 81-91.
Feld, S., Schönfeld, M., Werner, M. (2014). Analyzing the Deployment of Bitcoin's P2P Network under an AS-level Perspective, Procedia Computer Science, Volume 32. 1121-1126.
Feng, J. Zhao, X. Chen, K. Zhao, F. Zhang, G. (2020). Towards random-honest miners' selection and multi-blocks creation: Proof-of-negotiation consensus mechanism in blockchain networks" Future Generation Computer Systems, Volume 105, 248-258.
Ghazanfari, M. Alaeddini, A. Akhavan Niaki, S. T. Aryanezhad, M. (2008). A clustering approach to identify the time of a step change in Shewhart control charts, Quality and Reliability Engineering, 24(7):765-778.
Gilad, Y. Hemo, R. Micali S., Vlachos, G., Zeldovich, N. (2017). Algorand: Scaling byzantine agreements for cryptocurrencies, in: Proceedings of the 26th Symposium on Operating Systems Principles, ACM, 51–68.
Gramoli, V. (2020). From blockchain consensus back to Byzantine consensus, Future Generation Computer Systems Volume 107, 760-769.
Horra, L. P.de l., Fuente, G. l., Perote, J. (2019). The drivers of Bitcoin demand: A short and long-run analysis", International Review of Financial Analysis, Volume 62: 21-34.
Hosseini Bamakan S. M. Motavali, A. Bondarti, A. B. (2020). A survey of blockchain consensus algorithms performance evaluation criteria, Expert Systems with Applications, Volume 154, 15 September 2020, 113385.
Javed, A. Lee, B. S. Rizzo, D. M. (2020). A benchmark study on time series clustering, Machine Learning with Applications 1, 100001, 1-13.
Ji, Q., Bouri E., Gupta, R., Roubaud, D. (2018). Network causality structures among Bitcoin and other financial assets: A directed acyclic graph approach, The Quarterly Review of Economics and Finance, Volume 70, 203-213.
johnpaul, c., prasad, m. v., nickolas, s., & gangadharan, g. (2020). trendlets: a novel probabilistic representational structure for clustering the time series data. expert systems with applications,145, article 113119
Kacprzyk, J., & Fedrizzi, M. (1988). A ‘soft’ measure of consensus in the setting of partial (fuzzy) preferences. European Journal of Operational Research, 34, 316–325.
Killeen, A. (2015). The Confluence of Bitcoin and the Global Sharing Economy, Chapter 24, Handbook of Digital Currency Bitcoin, Innovation, Financial Instruments, and Big Data, 485-503.
Lafourcade, P. Lombard-Platet, M. (2020). About blockchain interoperability, Information Processing Letters, Volume 161, 105976.
Levin, R. B. O'Brien,A. A. Zuberi, M. M. (2015). chapter 17 - Real Regulation of Virtual Currencies, Handbook of Digital Currency Bitcoin, Innovation, Financial Instruments, and Big Data, 327-360.
Liu, Yujia. Liang, Changyong. Chiclana, Francisco. Wu, Jian. (2017). A trust induced recommendation mechanism for reaching consensus in group decision making. Knowledge-Based Systems Volume 119, 221-231.
Matta, M. Lunesu, I. Marchesi, M. (2015). Bitcoin Spread Prediction Using Social and Web Search Media. Università degli Studi di Cagliari Piazza d’Armi, 09123 Cagliari, Italy, Conference: Workshop Deep Content Analytics Techniques for Personalized & Intelligent Services.
Oliveira, M. T. d. Reis, L.H.A. Medeiros, D. S.V. Carrano, R. C. Olabarriaga, S. D. D. Mattosa, M.F. (2020). Blockchain reputation-based consensus: A scalable and resilient mechanism for distributed mistrusting applications, Computer Networks, Volume 179, 107367.
Pieters G., Vivanco, S. (2017). Financial regulations and price inconsistencies across Bitcoin markets, Information Economics and Policy, 0 00, 1–14.
Pournaras, E. (2020). Proof of witness presence: Blockchain consensus for augmented democracy in smart cities, Journal of Parallel and Distributed Computing, Volume 145,160-175.
Roth, N. (2015). An Architectural Assessment of Bitcoin: Using the Systems Modeling Language, Procedia Computer Science, Volume 44. 527-536.
Ruiz, L.G.B., Pegalajar, M.C. Arcucci, R. Molina-Solana, M. (2020). A Time-Series Clustering Methodology for Knowledge Extraction in Energy Consumption Data, Expert Systems with Applications, Volume 160, 113731.
Sarda-Espinosa A. (2017). Comparing Time-Series Clustering Algorithms in R Using the dtwclust Package, 1–41.
Segendorf, B. (2014). What is bitcoin? Sveriges Riksbank Econ, Rev. 2, 71–87.
Shin, D. H, (2008). Understanding purchasing behaviors in a virtual economy: Consumer behavior involving virtual currency in Web 2.0 communities, Interacting with Computers, 20, 433-446.
Systems with Applications, 145, Article 113119.
Troster, V., Tiwari A. K., Shahbaz M., Macedo D. N. (2019). Bitcoin returns and risk: A general GARCH and GAS analysis. Finance Research Letters, Volume 30: 187-193.
Turpin, J. B. (2014). Bitcoin: The Economic Case for a Global, Virtual Currency Operating in an Unexplored Legal Framework, Indiana Journal of Global Legal Studies, Vol. 21: Iss. 1, Article 13.
Viriyasitavat, W. Hoonsopon, D. (2019). Blockchain characteristics and consensus in modern business processes, Journal of Industrial Information Integration, Volume 13, 32-39.
Wang W., Zhang Y. (2007). On fuzzy cluster validity indices. Fuzzy sets and systems, 158(19), 2095–2117.
Xu, J., Wei, L., Zhang, Y., Wang, A. Zhou, F. Gao, C. (2018). Dynamic Fully Homomorphic encryption-based Merkle Tree for lightweight streaming authenticated data structures, Journal of Network and Computer Applications, Volume 107, 1.113-124.
Yu, B. Liu, J. Nepal, S. Yu, J. Rimba, P. (2019). Proof-of-QoS: QoS Based Blockchain Consensus Protocol, Computers & Security, Volume 87, 101580.
Zhang, H.J., Zhao, S.H., Kou, G., Li, C.C., Dong, Y.C., & Herrera, F. (2020). An overview on feedback mechanisms with minimum adjustment or cost in consensus reaching in group decision making: Research paradigms and challenges. Information Fusion, 60, 65-79.
Zhang, S. Lee, J. H. (2020). Analysis of the main consensus protocols of blockchain, ICT Express, Volume 6, Issue 2, 93-97.